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PROBLEMS IN THE SPREADING AND EXTRUSION OF A LAYER 

OF NON-LINEARLY VISCOUS FLUID* 

V.I. KERCHMAN 

In the approximation of lubrication theory /l/, an equation is derived 
for the non-steady flow of a thin layer of a power-law liquid along a 
horizontal plane, when different conditions are assumed to hold at the 
upper boundary of the layer. Among the problems considered are the 
spread of an initially localized inhomogeneity, let overflow, and 
spreading (extrusion) of a semi-infinite layer. Selfsimilar solutions 
are constructed for these problems describing waves propagating at 
finite velocities in the steady thickness region of the layer. Such 
situations occur in problems of tectonic physics /2/, glaciomechanics 
/3, 4/ and polymer technology /5, 6/. The more general problem of a 
layer flowing along a pliable base /2/ can be handled in exactly the 

same way. 

1. Adopting assumptions similar to those customary in the hydrodynamic theory of lubri- 

cation /l/, we shall derive an equation to describe the slow non-steady flow of a layer of 
incompressible viscous heavy fluid along a horizontal plane. The z axis is directed verti- 

cally upward from the plane, so that the surface of the layer, of variable thickness h, is 

represented by an equation z = h(x, y, t) Applied to this surface is a normal pressure P,(x, 

Yl 4 , either a) through a non-expandable flexible film or b) under conditions permitting 

free horizontal displacements (no shearing stresses). 
It will be convenient to work in non-dimensional variables: 

x = X/L, Y = y/L, Z = zlH, V = vIU, a = HIL <( 1 

(H and L are the characteristic layer thickness and the characeristic horizontal scale, 

respectively, and II is a characteristic horizontal velocity). 
In the thin-layer approximation the velocity vector is almost parallel to the supporting 

plane (V, - a), and the derivatives with respect to x and y in the expressions for the rates 

of strain may be neglected compared with the derivatives with respect to 2: 

%z = UH-‘lr,’ 11 f 0 (aZ)l, .eyr = UH-‘V,’ [I + 0 (a”)] 

e, = UH-’ l/(Vs’)’ A- (Vu’)2 II f 0 (a)], V,’ = aV, I I?Z, V,’ = aV,ltIZ 

(1.1) 

(the quantity E,, is proportional to the octahedral rate of strain /6, 7/). 

The simplified equations of creeping flow are 

ao,,laz - aptax = 0, aO,,iaz - aplay = 0 

aplaz = -pg, av,iax + au,iay + av,laz = 0 
(1.2) 

where terms small to order a relative to the others have been omitted. 

Eqs.(1.2) must be supplemented by rheological conditions; in the case of isothermal 

creepage of rocks /8/ and ice /3, 4/, as well as the flow of certain polymers /5, 6, 9/, we 
may take these conditions in the form characteristic for power-law liquids of the pseudo- 

plastic type, i.e., in view of the estimates (1.1): 

At the lower boundary of the layer (contiguous with the plane) one usually assumes the 
no-slip condition: 

v=o,z=o 
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In the case of a non-expandable film on the upper surface 
conditions there are 

u, = 0, VW = 0, p = P,, (2 = h) 

In the case of free horizontal displacements of the layer 
the conditions 

a~, I a~ = 0, au, i a2 = 0, p = P, 
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of the layer, the boundary 

(W 

surface, one replaces (1.4) by 

(1.5) 

The solution of the third equation of (1.21, satisfying the relevant condition on the 
surface of the layer, corresponds to a hydrostatic pressure distribution: p = PO + pg (h- z). 
Substituting this expression into the first two Eqs.(l.2), we obtain a system of ordinary 
differential equations at each point of the plane, describing the variation of the velocities 

%* Da as functions of a (here x and y are acting as parameters). The first integral of 
this system has the form@ -;(% VP) is the two-dimensional velocity field) 

In most problems the pressure at the layer surface is Pe =const. Eq.(1.6) then takes a 
form in which conditions (1.4) or (1.5) are readily satisfied: 

6n / & = K" [ Vh I*-1 Vh 1 z - qh I”-’ (a - tjh) 

(K=pg/B, n=i/v) 
(1.7) 

The value of 4 is determined by the type of boundary condition at the surface: for no 
slip conditions (1.4) g =*Jg, while in the case of a free surface (1.5) q =1. Integration 
of Eq.tl.7) yields the horizontal velocity distribution: 

u = -(n + l)_'K" [(I&"'- Iqh- zp+‘]1 Vh pv/a U.8) 
Integrating the equation of continuity (the last equation of (1.21) over the layer 

thickness and using the fact that v, &+ = dhl& we obtain 

Substituting the expression for the velocity field (1.8) into (1.9) we obtain the final 
evolution equation for the layer thickness: 

(the factor 4 depends on the type of condition assumed at the surface). 
Eq.(l.lOl takes a particularly simple form if n is an odd integer. In particular, when 

n=l we obtain a well-known equation of the non-steady filtration type, describing the 
spread of a Newtonian liquid /2, 101. 
k vanishes, 

When n>l Eqs.(l.IOJ become degenerate not only when 
as in the non-steady filtration equation 111, 12/, but also in regions where the 

layer thickness h has non-trivial stationary values (Vh =I.)). 
The treatment of the general case of non-uniform pressure PC is analogous. For odd n 

the equation of plane-parallel flow in the x direction has the form 

Note that Eqs.(l.lOf and (1.11) are approximations 
Froude numbers Fr= Ulfl. 

, corresponding to vanishingly small 
In accordance with our formulation of the problem, *only non- 

negative solutions of equations of the type (1.10) are physically meaningful. 
In exactly the same way one can consider the problem of a liquid spreading over an uneven 

subhorizontal surface I= d(t,.y;t) (1 Vdl= O(a)i. The equation for the layer thickness will be 

ah f Jt = pV'p"'* 1 V (!G + d)n-tV (A + d)j (1.12) 

In particular, the base over which the liquid is spreading may be pliable. Suppose that 
the reference level a=~ corresponds to the equilibrium state at constant layer thickness 
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Ho and pressure PO. Then an additional sag (rise) A in the surface of the base will result 
in a change in the load pp(h- Ho) in the ratio of A = L(h -H,,)(L is an integrodifferential 
operator). For the simplest case of a Winkler-type base, for example, when the supporting 
surface of the layer x=-A is under conditions of local isostatic compensation relative 
to an underlying liquid of higher density pr. we have IS = (ir --H,)ptai (the typical situation 
in geodynamics /21). The equation for the layer thickness is then of the same form as 
(l.lO), but with a coefficient &== kfi, where k= (1 -p/p&“. 

One can also make allowance for surface tension forces. In that case the surface pressure 
PO in (1.4) and (1.5) is given by 

p. = p,, - oV*h 1% _I- 1 Vh I""]-' 

The equation of the first approximation is 

ah / at = f3V [hn+e IV (h - yV*k) I n-1V (h - yVZM), y = (i / (~1. (1.13) 

2. Let us consider a few problems for Eq.tl.10) with n = 3, the properties of whose 
solutions are typical for other values of n>l as well. The selfsimilar solutions con- 
structed here for these problems also describe the asymptotic behaviour at large times of 
solutions of problems with non-selfsimilar initial data, when the details of the initial 
distribution become unimportant ll31. 

An interesting case is the axially symmetric problem of the spread of a finite volume of 
liquid & localized at the initial time t = t, in a small neighbourhood of the origin: 

E!q.(l.lO) becomes 

(2.1) 

Dimensionality arguments imply that one should seek a solution of problem (2.2), (2.1) 
in the form 

k = LQ” / (@)i”* @ (Q, E = r / (PQ’t)“- 

which leads to an ordinary differential equation for CD: 

18 I%CDb (ca')l + (%Z@)' = 0 

with conditions 

(2.3) 

(2.4) 

@(%)>O, a,(w)=& Z?J%@(%)d%= 1 (2.5) 
0 

where it is required that the thickness 0 and stream function @(@')a be continuous. 
As in the case of other degenerate parabolic equations /ll, 121, pxoblem (2.41, (2.5) 

has no classical (smooth) solution. The generalized solution is given by a function @ (%) 
which satisfies Eq.(2.4) in a region %<Eo, where (P(%@ -O)= 0, and vanishes identically 

when %>%@. The solution of Eq.(2.4) is 

(I, = D (%;fa - %S)S. D = (2372 / ~~g)~~¶ = 0.8411 (2.6) 

where %0 is determined by the integral conditions(2.5): 

3/,nor(y,) r("o/,)[r ("l/J-'%OS'~ = 1, 60 = 0.821 

The case of an arbitrary rheological exponent n is treated in the same way (see below). We 
note that a suitable "reference" time te in the solution of (2.3) with non-selfsimilar initial 
data is conveniently chosen by the formula t, = @Q7)'(ro / &,#*. When that is done the solution 
(2.31, (2.6) defines the "intermediate asymptotic behaviour" 113f for a problem with initial 
data (2.1), when t>&. 

A more complicated structure is observed in the solution of the problem with initial data 

At-c, such that VA It=t,.em 0 in certain subregions. Let us consider the problem of the plane- 
parallel spread (extrusion) of an initially semi-infinite layer, which can propagate horizont- 
ally, i.e., 

(2.7) 



and under the conditions 
A Ix=m = 0, h /p-m = H, ( or h lo=a = Ho) 

A selfsimilar solution of this class of problems for the equation 

has the form 

The function f(g) is found by solving the ordinary differential equation 

4 IP (f')SI' + &' = 0 

with conditions 
f(w)=o;f(--m) = I( or f(o)== 1) 

assuming in addition that the functions f and j6 v)a are continuous.. 
Eq.(2.11) is invariant under the transformation group 

F (E, A) = h"/lf GE) 

Changing to variables 

we obtain an equation for $(cp): 
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(2.8) 

(2.10) 

(2.11) 

(2.12J 

(2.13) 

whose field of integral curves in the half-plane cp>O is shown in Fig.1. 
The integral curves of the "general position" which 

approach the % axis in the lower quadrant may be 
divided into two classes, depending on which terms in 
the equation predominate as m-0. The singular integral 
curve separating these classes (the dash-dot curve in 
Fig.1) is obtained when the order of both singular terms 
on the right of (2.14) is the same, i.e., ~--C&J~!*, 
and the equation yields &a=%. The corresponding 
solution of Eq.(2.11) has the following asymptotic rep- 
resentation near the leading front of the perturbation, 
I.e., the point b at which f (El vanishes: 

f (E) = El’* i’l&o & - &)P (2X9 

Note that in this situation the stream function 
vanishes as required f’(f’)a -t 0 as f, -t &I - 0. 

The integral curves of class 1 lie beneath this 
curve and correspond to the asymptotic form of Eq.(2.14) 

Fig.1 @ldrp = -"/#$-t O(i), so that 1p--Clp"'* as 9-0; 
consequently, the expression tends to a non-zero constant 
as E-&--o. 

The integral curves of class 2 approach the cp axis vertically, and the corresponding 
asymptotic form of the equation is 481p WIW = 79-9 
the curve is described by the equation 

in the neighbourhood of the point (r&O) 

'lli= = ('la3 OP - 'pd Ie*6 (2.16) 

but for large 'P the curves of class 2 approach the singular integral curve asymptotically 
from above. Thus, only the singular curve can give us a banch of an admissible solution of 
Eq.(2.11) for &>o. As 'p-03. corresponding to 
asymptotic representation 

E-+0, the integral curves admit of the 

!I# 1 = c,cp-v* + 0 &I-“‘), C,(O) ” 0.013 (2.17) 

The behaviour of the solutions of Eq.(2.11) with negative derivative f’ at %<O is 
determined by the integral curves of Eq.42.14) situated in the upper quadrant, which leave 
the region of large cp values according to the asymptotic law (2.17) (curves of class 3). 
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They approach the cp axis vertically, satisfying (2.16), while at the same time 

f (E) - f (5.) = m (E - %J", m < 0 (2.1s) 

in the neighbourhood of the point %,<o at which f’= 0. 
At this point %*=%a for the selected monotonic solution of Eq.(2.11), the effective 

"diffusion coefficient" flhb(ah/az)' of Eq.(2.9) vanishes, and therefore the front of the 
depression wave reaches the unifo m 

ri 
state h = H, at a finite velocity, and instead of con- 

tinuing the branch of the integral curve in Fig.1 into the lower quadrant (along a curve of 
class of class 2) I the solution takes the constant value fSi at %<6 (at the same time' 
continuing to satisfy the flow continuity condition at the point of degeneration). 

The curves of class 4, which emanate vertica_lly from the points of the o axis at 'PC; 
(PC z 0.882 with asymptote (2.16), intersect the straight line 9 = VP(P with vertical tangent 
and, changing direction, go off to infinity along the IJ axis. They correspond to rapidly 
increasing, unbounded solutions of Eq.(2.11). 

When actually constructing the selected solution (the lower solid curve on the right-hand 
side of Fig.2) it is convenient to use the group invariance property (2.13). Numerical 
methods can be used to find a solution F,(S) of the Cauchy problem for Eq.(2.11) in the 
region E<1 with initial data for F, and F,’ at % = 1 - e(e. = IOeB 10-y satisfying the 
asymptotic formula (2.15). 
F,’ = 0 . 

This solution is monotonic up to the point %,z-3.175, at which 
Taking h = IF, (&*)J’J* = 2.9694, we obtain the desired solution f(E)= F,(h%)IF,(&), 

with El = 1 lh = 0.3367; & = %, i h = -1,069. When g > E1 we have f (5) = 0, but when %< Ez 
we assume f= 1. 

For the best agreement of the solution of a Cauchy problem (2.3), (2.7), satisfying 
initial data of a fairly general type, with the asymptotic selfsimilar solution (2.10), the 
free parameters t,* x0 should be chosen so that 

Fig.2 

b 
1 h,(x)dx = 3 [H, -h,(z)]dx (2.19) 

x. --I* 

Numerical experiments indicate that the deviation of the non-selfsimilar solution from 
the selfsimilar asymptotic form for constant %E (%,, 5,) d ecreases as least as rapidly as 

(to I tj”. 
In exactly the same way one can consider problems with initial data that differ from 

(2.7) by assuming that the layer thickness is constant over the positive half-axis (for x>l,): 
h = H+ = 6H, (0 < 6 < 1) (in the limit of I,, 1,-t 0 one obtains the problem of the "dis- 

integration of an arbitrary discontinuity"). The selfsimilar intermediate asymptotic form 
of the solution has the same form (2.10); the leading and trailing edges of the spreading 
wave reach a steady at finite velocities, according to the asymptotic law x, = %I U=o't)"~, 
x_ = %* @H,V)“~ (unlike the analogous problem for a layer of a Newtonian liquid). 

A representative phase tralectory of Eq.(2.14), joining two steady levels, will consist 
of two integral curves: one of class 2 for &>O and one of class 3 for %,<a. The correspond- 
ing solutions of Eq.(2.11) are constructed with allowance for the asymptotic representation 
(2.18). Graphs of the solutions for a few 6 values are shown on the right-hand side of Fig. 
2; the inset on the left shows curves, plotted against 6, of the numbers %, and %2 deter- 
mining the propagation of the leading and trailing edges of the spread wave. 

In various real-life problems, particularly in geophysics, the conditions on the surface 
of the layer are mixed: over part of the surface the flow takes place, as it were, "under a 
lid", while the rest of the surface is free (and even more complex combinations may occur). 
As follows from Sect.1, this gives rise to a spread equation with variable (discontinuous) 
coefficients. Thus, under conditions of plane-parallel selfextrusion from beneath a film 
x,<on Eq.tl.11) must be replaced in the region with free surface .r>O by the equation 
(with P, = const) 
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(2.20) 

while at the point r=o a matching condition must be satisfied (continuity of flow): (ah/ 
3x)_, = z'+lJ* (dk Ids),,. 

The corresponding selfsimilar solution of problem (2.9), (2.8) (in the case of conditions 
at x=&m) for n=3 is expressed in the form (2.10) and represented by the dashed curve 
in Fig.2. 

Wore complex extrusion problems are obtained if the applied pressure in equations of 
type (l.ll), (2.20) and their multidimensional generalizations is allowed to vary. In 
particular, the variation of the surface pressure P o may be due to the finite stiffness of 
the covering film layer (plate), a membrane effect, i.e, in equations of type (l.ll)P, = pb f 
Ah, where h is a differential operator. 

3. We note that the basic spread Eq.(l.lO) also holds for dilatant power-law liquids, 
when v>l in (1.3) (rheological exponent n<l). For this class of liquids Eq.(l.lO) is 
identical with a special case of the turbulent filtration equations for a gas /14, 15/: 

when the exponent of the polytropic equation of the state y= k--i is related to the degree 
of turbulence n by the equation y= 1-t 2/n. A detailed investigation of selfsimilar solutions 
of Eq.(3.1) may be found in /IS/, and the conclusions carry over in many cases to the spread 
of pseudoplastic liquids(n=, i}. Properties associated with strong degeneration are preserved 
in dilatant liquids; for example, perturbations propagate at a finite velocity in the region 
where h=O. On the other hand, there is no weak degeneration (with respect to Vhj, and there- 
fore perturbations build up to non-zero steady states at infinite velocities (unlike the 
basic case considered above of a pseudoplastic liquid). 

We shall construct selfsimilar solutions satisfying zero initial data, for arbitrary n 
and a power law of variation of the total volume due to an influx concentrated on the axis 
T=Q 

Fig.3 

These solutions may be treated as the non-steady overflow of 
a jet of liquid on a supporting plane. They have the form 

where Q, satifies the equation 

(Sn f 3)(t@=+'d (-@‘)"I'= [(2. + I) h+ 11 P@'-- I?+ (n + 1) - 21 E@ 

On the assumption that the discharge is fixed (I= 1), the 
functions have the form shown in Fig.3 for a= i (the solid 
curve), n=: 3 (the dashed curve) and a=5 (the dot-dash 
curve). In selfsimilar variables, when ~32.5 one has a 
"quasi-universal" spread profile, distinguished only by a 
singularity at the front. 

The derivation of Eq.(l.lO) and its generalized versions 
carries over directly to spread and extrusion problems for 
more general Reiner-Rivlin liquids /b, 7, Q/. For example, 
suppose that the rheological equation for plane-parallel flow 
of a layer is 

y‘ = G (or) (r' = +&a, z = (I& 

Then the analogue of Eqs.(l.lO) and (1.11) takes the form 

ah/at = -a&#* 

As before, in the case of a free surface Q= 1, and for flow "under a flexible lid"q==1[,, 
In particular, the equations for two widely used models are as follows /Qj: 

the Ellis-de Haven model (G(T)=(A + c~T~)T): 
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and the Prandtl-Eyring model(G(@= B&@/T*): 

-&$&[,($)-‘,h(Rh++ 

(R g)-’ ,h(Rh$)], R=pg/z, 
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